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On a filtered probability space let us consider the following interactions of N(≥ 2) Brownian
particles each of which diffuses on the nonnegative half line R+ and is attracted towards the
average position of all the particles. When a particle i attains the boundary 0 , it is annihilated
(default) and a new particle (also called i ) spikes immediately in the middle of particles. More
precisely, let us denote by Xt := (X1

t , . . . , X
N
t ) the positions of these particles, where X i

t(≥ 0)
is the position of particle i at time t ≥ 0 for i = 1, . . . , N . With the average X t := (X1

t +
· · ·+XN

t ) /N the dynamics of the system is determined by

X i
t = X i

0 +

∫ t

0

b(X i
s, Xs)ds+W i

t +

∫ t

0

Xs−

(
dM i

s −
1

N

∑

j 6=i

dM j
s

)
; t ≥ 0 ,

M i
t :=

∞∑

k=1

1{τ i
k
≤t} , τ ik := inf

{
s > τ ik−1 : X

i
s− −

Xs−

N

∑

j 6=i

(M j
s −M j

s−) ≤ 0
}
,

(1)

for i = 1, . . . , N , k ∈ N , where Wt := (W 1
t , . . . ,W

N
t ) , t ≥ 0 is an N -dimensional Brownian

motion, M i
t is the cumulative number of defaults by time t ≥ 0 , τ ik is the k -th default time with

τ i0 = 0 of particle i . Here we assume that b : R2
+ → R is (globally) Lipschitz continuous, i.e.,

there exists a constant κ > 0 such that

|b(x1,m1)− b(x2,m2)| ≤ κ
(
|x1 − x2|+ |m1 −m2|

)
(2)

for all x1, x2,m1,m2 ∈ R+ , and we also impose the condition

N∑

i=1

b(xi, x) ≡ 0 (3)

for every x := (x1, . . . , xN) ∈ R
N
+ and x := (x1 + · · ·+ xN) /N on the drift function b(·, ·) .

Given a standard Brownian motion W· we shall consider a system X· := (X1
· , . . . , X

N
· ) ,

M· := (M1
· , . . . ,M

N
· )) described by (1) with (2)-(3) on a filtered probability space (Ω,F ,F,P)

with filtration F := (Ft, t ≥ 0) . In particular, we are concerned with (1) that there might be
multiple defaults at the same time with positive probability, i.e.,

P
(
∃(i, j) ∃t ∈ [0,∞) such that X i

t = Xj
t = 0

)
> 0 .

We shall construct a solution to (1) with a specific boundary behavior of defaults until the
time τ 0 := inf{s > 0 : max1≤i≤N X i

s = 0} . Let us define the following map Φ(x) :=
(Φ1(x), . . . ,ΦN(x)) : [0,∞)N 7→ [0,∞)N and set-valued function Γ : R

N
+ → {1, . . . , N}

defined by Γ0(x) := {i ∈ {1, . . . , N} : xi = 0} ,

Γk+1(x) :=
{
i ∈ {1, . . . , N} \

k⋃

ℓ=1

Γℓ(x) : x
i −

x

N
·
∣∣∣

k⋃

ℓ=1

Γℓ(x)
∣∣∣ ≤ 0

}
; k = 0, 1, 2, . . . , N − 3
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Γ(x) :=
N−2⋃

k=0

Γk(x) , Φi(x) := xi + x
((
1 +

1

N

)
· 1{i∈Γ(x)} −

1

N
· |Γ(x)|

)
(4)

for x = (x1, . . . , xN) ∈ R
N
+ , i = 1, . . . , N with x := (x1 + · · · + xN) /N ≥ 0 . Note that

Φ([0,∞)N \ {0}) ⊆ [0,∞)N \ {0} and Φ(0) = 0 = (0, . . . , 0) .

Lemma 1. Given a standard Brownian motion W· and the initial configuration X0 ∈ (0,∞)N

one can construct the process (X·,M·) which is the unique, strong solution to (1) with (2), (3) on
[0, τ 0] , such that if there is a default, i.e., |Γ(Xt−)| ≥ 1 at time t , then the post-default behavior
is determined by the process with X i

t = Φi(Xt−) for i = 1, . . . , N .

Now let us discuss the system (1) with (2)-(3) as a mean-field approximation for nonlinear
equation of MCKEAN-VLASOV type. For the sake of concreteness, let us assume b(x,m) =
−a(x − m) , x,m ∈ [0,∞) for some a > 0 . By the theory of propagation of chaos (e.g.,
TANAKA (1984), SHIGA & TANAKA (1985) and SZNITMAN (1991)) as N → ∞ , the dynamics
of the finite-dimensional marginal distribution of limiting representative process is expressed by

Xt = X0 − a

∫ t

0

(Xs − E[Xt])ds+Wt +

∫ t

0

E[Xs−]d(Ms − E[Ms]) ; t ≥ 0 , (5)

where W· is the standard Brownian motion, Mt :=
∑∞

k=1 1{τk≤t} , τ
k := inf{s > τ k−1 : Xt− ≤

0} , k ≥ 1 , τ 0 = 0 . Then taking expectations of both sides of (5), we obtain E[Xt] = E[X0] ,
t ≥ 0 . When X0 = x0 a.s. for some x0 > 0 , substituting this back into (5), we obtain

Xt = X0 − a

∫ t

0

(Xs −X0)ds+Wt + X0(Mt − E[Mt]) ; t ≥ 0 .

Transforming the state space from [0,∞) to (−∞, 1] by X̂t := (x0 −Xt) / x0 , we see

X̂t = −

∫ t

0

aX̂sds+ Ŵt − M̂t + E[M̂t] ; t ≥ 0 , (6)

where we denote Ŵ· = W· / x0 , M̂· = M· .
This transformed process X̂· is similar to the nonlinear MCKEAN-VLASOV-type stochastic

differential equation

X̃t = X̃0 +

∫ t

0

b(X̃s)ds+ W̃t − M̃t + αE[M̃t] ; t ≥ 0 , (7)

studied by DELARUE, INGLIS, RUBENTHALER & TANRÉ (2015 a,b). Here X̃0 < 1 , α ∈ (0, 1) ,
b : (−∞, 1] → R is assumed to be Lipschitz continuous with at most linear growth. W̃· is
the standard Brownian motion, M̃· =

∑∞
k=1 1{τ̃k≤·} with τ̃ k := inf{s > τ k−1 : X̃s− ≥ 1} ,

k ≥ 1 , τ̃ 0 = 0 . When we specify X̃0 = 0 , b(x) = −ax , x ∈ R+ , and α = 1 , the solution
(X̂·,M̂·) to (7) reduces to the solution (X̃·,M̃·) to (6), however, the previous study of (7) does
not guarantee the uniqueness of solution to (7) in the case α = 1 .



Proposition 1. Assume x0 > 1 and b(x,m) = −a(x − m) , x,m ∈ [0,∞) for some a > 0 .
There exists a unique strong solution to (6) on [0, T ] . Moreover, for every T > 0 , there exists a
constant cT such that every solution to (6) satisfies (d/dt)E[M̂t] ≤ cT for 0 ≤ t ≤ T .

The proof is based on a fixed point argument. For example, when a = 0 , we may reformulate
the solution (X̂·,M̂·) in (6) as

Ẑt = X̂t + M̂t = Ŵt + E[M̂t] , M̂t = ⌊ sup
0≤s≤t

(Ẑs)
+⌋ ; t ≥ 0 , (8)

where ⌊x⌋ is the integer part. Given a candidate solution et for E[M̂t] , t ≥ 0 , we shall consider

Ẑe
t := Ŵt + et , M̂e

t := ⌊ sup
0≤s≤t

(Ẑe
s )
+⌋ ; t ≥ 0 , (9)

where the superscripts e of Ẑe
· and M̂e

· represent the dependence on e· . Then uniqueness of
the solution to (6) is reduced to uniqueness of the fixed point e∗· = M·(e

∗) of the map M :
C(R+,R+)→ C(R+,R+) defined by

Mt(e) := E
[
⌊ sup
0≤s≤t

(Ẑe
s )
+⌋

]
= E[M̂e

t ] ; t ≥ 0 . (10)

By utilizing the monotone property of the map Mt and the first passage time distribution for
diffusions, we show contraction and then find a unique fixed point in the class of continuously
differentiable, nonnegative functions bounded by a linear line with slope 1 / x0 .

It follows from Proposition 1 that the propagation-of-chaos result holds for the reformulated
solution (Z·,M·) from the original X· in (1). Thus we have the following.

Proposition 2. Under the same assumption as in Proposition 1, for every k ≥ 1 , ℓ ≥ 1 , t1, . . . tℓ ,
as N → ∞ the vector (X i

tj
,M i

tj
) , 1 ≤ i ≤ k , 1 ≤ j ≤ ℓ defined from (1) converges towards

the finite dimensional marginals at times t1, . . . , tℓ of k independent copies of (X·,M·) in (5).

We shall also discuss the invariant distribution of X· in (5) and relation to the mean field games.
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