On mean-field approximation of particle systems with annihilation and spikes

Tomoyuki Ichiba ${ }^{1}$

On a filtered probability space let us consider the following interactions of $N(\geq 2)$ Brownian particles each of which diffuses on the nonnegative half line \mathbb{R}_{+}and is attracted towards the average position of all the particles. When a particle i attains the boundary 0 , it is annihilated (default) and a new particle (also called i) spikes immediately in the middle of particles. More precisely, let us denote by $X_{t}:=\left(X_{t}^{1}, \ldots, X_{t}^{N}\right)$ the positions of these particles, where $X_{t}^{i}(\geq 0)$ is the position of particle i at time $t \geq 0$ for $i=1, \ldots, N$. With the average $\bar{X}_{t}:=\left(X_{t}^{1}+\right.$ $\left.\cdots+X_{t}^{N}\right) / N$ the dynamics of the system is determined by

$$
\begin{align*}
& X_{t}^{i}=X_{0}^{i}+\int_{0}^{t} b\left(X_{s}^{i}, \bar{X}_{s}\right) \mathrm{d} s+W_{t}^{i}+\int_{0}^{t} \bar{X}_{s-}\left(\mathrm{d} M_{s}^{i}-\frac{1}{N} \sum_{j \neq i} \mathrm{~d} M_{s}^{j}\right) ; \quad t \geq 0 \\
& M_{t}^{i}:=\sum_{k=1}^{\infty} \mathbf{1}_{\left\{\tau_{k}^{i} \leq t\right\}}, \quad \tau_{k}^{i}:=\inf \left\{s>\tau_{k-1}^{i}: X_{s-}^{i}-\frac{\bar{X}_{s-}}{N} \sum_{j \neq i}\left(M_{s}^{j}-M_{s-}^{j}\right) \leq 0\right\}, \tag{1}
\end{align*}
$$

for $i=1, \ldots, N, k \in \mathbb{N}$, where $W_{t}:=\left(W_{t}^{1}, \ldots, W_{t}^{N}\right), t \geq 0$ is an N-dimensional Brownian motion, M_{t}^{i} is the cumulative number of defaults by time $t \geq 0, \tau_{k}^{i}$ is the k-th default time with $\tau_{0}^{i}=0$ of particle i. Here we assume that $b: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ is (globally) Lipschitz continuous, i.e., there exists a constant $\kappa>0$ such that

$$
\begin{equation*}
\left|b\left(x_{1}, m_{1}\right)-b\left(x_{2}, m_{2}\right)\right| \leq \kappa\left(\left|x_{1}-x_{2}\right|+\left|m_{1}-m_{2}\right|\right) \tag{2}
\end{equation*}
$$

for all $x_{1}, x_{2}, m_{1}, m_{2} \in \mathbb{R}_{+}$, and we also impose the condition

$$
\begin{equation*}
\sum_{i=1}^{N} b\left(x^{i}, \bar{x}\right) \equiv 0 \tag{3}
\end{equation*}
$$

for every $x:=\left(x^{1}, \ldots, x^{N}\right) \in \mathbb{R}_{+}^{N}$ and $\bar{x}:=\left(x^{1}+\cdots+x^{N}\right) / N$ on the drift function $b(\cdot, \cdot)$.
Given a standard Brownian motion W. we shall consider a system X. : $=\left(X_{1}^{1}, \ldots, X^{N}\right)$, $\left.M .:=\left(M_{.}^{1}, \ldots, M_{\cdot}^{N}\right)\right)$ described by (1) with (2)-(3) on a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ with filtration $\mathbb{F}:=\left(\mathcal{F}_{t}, t \geq 0\right)$. In particular, we are concerned with (1) that there might be multiple defaults at the same time with positive probability, i.e.,

$$
\mathbb{P}\left(\exists(i, j) \exists t \in[0, \infty) \text { such that } X_{t}^{i}=X_{t}^{j}=0\right)>0
$$

We shall construct a solution to (1) with a specific boundary behavior of defaults until the time $\bar{\tau}_{0}:=\inf \left\{s>0: \max _{1 \leq i \leq N} X_{s}^{i}=0\right\}$. Let us define the following map $\Phi(x):=$ $\left(\Phi^{1}(x), \ldots, \Phi^{N}(x)\right):[0, \infty)^{N} \mapsto[0, \infty)^{N}$ and set-valued function $\Gamma: \mathbb{R}_{+}^{N} \rightarrow\{1, \ldots, N\}$ defined by $\Gamma_{0}(x):=\left\{i \in\{1, \ldots, N\}: x^{i}=0\right\}$,
$\Gamma_{k+1}(x):=\left\{i \in\{1, \ldots, N\} \backslash \bigcup_{\ell=1}^{k} \Gamma_{\ell}(x): x^{i}-\frac{\bar{x}}{N} \cdot\left|\bigcup_{\ell=1}^{k} \Gamma_{\ell}(x)\right| \leq 0\right\} ; \quad k=0,1,2, \ldots, N-3$

[^0]\[

$$
\begin{equation*}
\Gamma(x):=\bigcup_{k=0}^{N-2} \Gamma_{k}(x), \quad \Phi^{i}(x):=x^{i}+\bar{x}\left(\left(1+\frac{1}{N}\right) \cdot \mathbf{1}_{\{i \in \Gamma(x)\}}-\frac{1}{N} \cdot|\Gamma(x)|\right) \tag{4}
\end{equation*}
$$

\]

for $x=\left(x^{1}, \ldots, x^{N}\right) \in \mathbb{R}_{+}^{N}, i=1, \ldots, N$ with $\bar{x}:=\left(x^{1}+\cdots+x_{N}\right) / N \geq 0$. Note that $\Phi\left([0, \infty)^{N} \backslash\{\mathbf{0}\}\right) \subseteq[0, \infty)^{N} \backslash\{\mathbf{0}\}$ and $\Phi(\mathbf{0})=\mathbf{0}=(0, \ldots, 0)$.

Lemma 1. Given a standard Brownian motion W. and the initial configuration $X_{0} \in(0, \infty)^{N}$ one can construct the process ($X ., M$.) which is the unique, strong solution to (1) with (2), (3) on $\left[0, \bar{\tau}_{0}\right]$, such that if there is a default, i.e., $\left|\Gamma\left(X_{t-}\right)\right| \geq 1$ at time t, then the post-default behavior is determined by the process with $X_{t}^{i}=\Phi^{i}\left(X_{t-}\right)$ for $i=1, \ldots, N$.

Now let us discuss the system (1) with (2)-(3) as a mean-field approximation for nonlinear equation of McKean-Vlasov type. For the sake of concreteness, let us assume $b(x, m)=$ $-a(x-m), x, m \in[0, \infty)$ for some $a>0$. By the theory of propagation of chaos (e.g., Tanaka (1984), Shiga \& Tanaka (1985) and Sznitman (1991)) as $N \rightarrow \infty$, the dynamics of the finite-dimensional marginal distribution of limiting representative process is expressed by

$$
\begin{equation*}
\mathcal{X}_{t}=\mathcal{X}_{0}-a \int_{0}^{t}\left(\mathcal{X}_{s}-\mathbb{E}\left[\mathcal{X}_{t}\right]\right) \mathrm{d} s+W_{t}+\int_{0}^{t} \mathbb{E}\left[\mathcal{X}_{s-}\right] \mathrm{d}\left(\mathcal{M}_{s}-\mathbb{E}\left[\mathcal{M}_{s}\right]\right) ; \quad t \geq 0 \tag{5}
\end{equation*}
$$

where W. is the standard Brownian motion, $\mathcal{M}_{t}:=\sum_{k=1}^{\infty} \mathbf{1}_{\left\{\tau^{k} \leq t\right\}}, \tau^{k}:=\inf \left\{s>\tau^{k-1}: \mathcal{X}_{t-} \leq\right.$ $0\}, k \geq 1, \tau^{0}=0$. Then taking expectations of both sides of (5), we obtain $\mathbb{E}\left[\mathcal{X}_{t}\right]=\mathbb{E}\left[\mathcal{X}_{0}\right]$, $t \geq 0$. When $\mathcal{X}_{0}=x_{0}$ a.s. for some $x_{0}>0$, substituting this back into (5), we obtain

$$
\mathcal{X}_{t}=\mathcal{X}_{0}-a \int_{0}^{t}\left(\mathcal{X}_{s}-\mathcal{X}_{0}\right) \mathrm{d} s+W_{t}+\mathcal{X}_{0}\left(\mathcal{M}_{t}-\mathbb{E}\left[\mathcal{M}_{t}\right]\right) ; \quad t \geq 0
$$

Transforming the state space from $[0, \infty)$ to $(-\infty, 1]$ by $\widehat{\mathcal{X}}_{t}:=\left(x_{0}-\mathcal{X}_{t}\right) / x_{0}$, we see

$$
\begin{equation*}
\widehat{\mathcal{X}}_{t}=-\int_{0}^{t} a \widehat{\mathcal{X}}_{s} \mathrm{~d} s+\widehat{W}_{t}-\widehat{\mathcal{M}}_{t}+\mathbb{E}\left[\widehat{\mathcal{M}}_{t}\right] ; \quad t \geq 0 \tag{6}
\end{equation*}
$$

where we denote $\widehat{W} .=W . / x_{0}, \widehat{\mathcal{M}}=\mathcal{M}$.
This transformed process $\widehat{\mathcal{X}}$. is similar to the nonlinear MCKEAN-VLASOV-type stochastic differential equation

$$
\begin{equation*}
\widetilde{\mathcal{X}}_{t}=\widetilde{\mathcal{X}}_{0}+\int_{0}^{t} \mathrm{~b}\left(\widetilde{\mathcal{X}}_{s}\right) \mathrm{d} s+\widetilde{W}_{t}-\widetilde{\mathcal{M}}_{t}+\alpha \mathbb{E}\left[\widetilde{\mathcal{M}}_{t}\right] ; \quad t \geq 0 \tag{7}
\end{equation*}
$$

studied by Delarue, Inglis, Rubenthaler \& Tanré (2015 a,b). Here $\widetilde{\mathcal{X}}_{0}<1, \alpha \in(0,1)$, $\mathrm{b}:(-\infty, 1] \rightarrow \mathbb{R}$ is assumed to be Lipschitz continuous with at most linear growth. \widetilde{W}. is the standard Brownian motion, $\widetilde{\mathcal{M}}=\sum_{k=1}^{\infty} \mathbf{1}_{\left\{\tilde{\tau}^{k} \leq \cdot\right\}}$ with $\widetilde{\tau}^{k}:=\inf \left\{s>\tau^{k-1}: \widetilde{\mathcal{X}}_{s-} \geq 1\right\}$, $k \geq 1, \widetilde{\tau}^{0}=0$. When we specify $\widetilde{\mathcal{X}}_{0}=0, \mathrm{~b}(x)=-a x, x \in \mathbb{R}_{+}$, and $\alpha=1$, the solution $(\widehat{\mathcal{X}}, \widehat{\mathcal{M}}$.) to (7) reduces to the solution ($\widetilde{\mathcal{X}}, \widetilde{\mathcal{M}}$.) to (6), however, the previous study of (7) does not guarantee the uniqueness of solution to (7) in the case $\alpha=1$.

Proposition 1. Assume $x_{0}>1$ and $b(x, m)=-a(x-m), x, m \in[0, \infty)$ for some $a>0$. There exists a unique strong solution to (6) on $[0, T]$. Moreover, for every $T>0$, there exists a constant c_{T} such that every solution to (6) satisfies $(\mathrm{d} / \mathrm{d} t) \mathbb{E}\left[\widehat{\mathcal{M}}_{t}\right] \leq c_{T}$ for $0 \leq t \leq T$.

The proof is based on a fixed point argument. For example, when $a=0$, we may reformulate the solution $(\widehat{\mathcal{X}}, \widehat{\mathcal{M}}$.) in (6) as

$$
\begin{equation*}
\widehat{\mathcal{Z}}_{t}=\widehat{\mathcal{X}}_{t}+\widehat{\mathcal{M}}_{t}=\widehat{W}_{t}+\mathbb{E}\left[\widehat{\mathcal{M}}_{t}\right], \quad \widehat{M}_{t}=\left\lfloor\sup _{0 \leq s \leq t}\left(\widehat{\mathcal{Z}}_{s}\right)^{+}\right\rfloor ; \quad t \geq 0 \tag{8}
\end{equation*}
$$

where $\lfloor x\rfloor$ is the integer part. Given a candidate solution e_{t} for $\mathbb{E}\left[\widehat{\mathcal{M}}_{t}\right], t \geq 0$, we shall consider

$$
\begin{equation*}
\left.\widehat{Z}_{t}^{e}:=\widehat{W}_{t}+e_{t}, \quad \widehat{\mathcal{M}}_{t}^{e}:=\operatorname{Lup}_{0 \leq s \leq t}\left(\widehat{Z}_{s}^{e}\right)^{+}\right\rfloor ; \quad t \geq 0 \tag{9}
\end{equation*}
$$

where the superscripts e of \widehat{Z}^{e}. and $\widehat{\mathcal{M}}{ }^{e}$ represent the dependence on e. . Then uniqueness of the solution to (6) is reduced to uniqueness of the fixed point $e_{*}^{*}=\mathfrak{M}$. $\left(e^{*}\right)$ of the map \mathfrak{M} : $C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right) \rightarrow C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$defined by

$$
\begin{equation*}
\left.\mathfrak{M}_{t}(e):=\mathbb{E}\left[\sup _{0 \leq s \leq t}\left(\widehat{Z}_{s}^{e}\right)^{+}\right\rfloor\right]=\mathbb{E}\left[\widehat{\mathcal{M}}_{t}^{e}\right] ; \quad t \geq 0 \tag{10}
\end{equation*}
$$

By utilizing the monotone property of the map \mathfrak{M}_{t} and the first passage time distribution for diffusions, we show contraction and then find a unique fixed point in the class of continuously differentiable, nonnegative functions bounded by a linear line with slope $1 / x_{0}$.

It follows from Proposition 1 that the propagation-of-chaos result holds for the reformulated solution $(\mathcal{Z} ., \mathcal{M}$.) from the original X. in (1). Thus we have the following.

Proposition 2. Under the same assumption as in Proposition 1, for every $k \geq 1, \ell \geq 1, t_{1}, \ldots t_{\ell}$, as $N \rightarrow \infty$ the vector $\left(X_{t_{j}}^{i}, M_{t_{j}}^{i}\right), 1 \leq i \leq k, 1 \leq j \leq \ell$ defined from (1) converges towards the finite dimensional marginals at times t_{1}, \ldots, t_{ℓ} of k independent copies of (\mathcal{X}., M.) in (5).

We shall also discuss the invariant distribution of \mathcal{X}. in (5) and relation to the mean field games.

Bibliography

[1] F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré. (2015a) Global solvability of a networked integrate-and-fire model of Mckean-Vlasov type, Ann. Appl. Probab., 25, pp. 2096-2133.
[2] F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré. (2015b) Particle systems with a singular mean-field self-excitation. Application to neuronal networks, Stochastic Process. Appl., 125, pp. 2451-2492.
[3] T. Shiga \& H. Tanaka. (1985) Central limit theorem for a system of Markovian particles with mean field interactions, Probab. Theory Related Fields 69 (3) (1985) 439-459.
[4] A.-S. Sznitman. (1991) Topics in propagation of chaos, in: École d'Été de Probabilités de Saint-Flour XIX -1989, Springer, pp. 165-251.
[5] H. TAnAKA. (1984) Limit theorems for certain diffusion processes with interaction, in Stochastic Analysis (Katata/Kyoto, 1982), North-Holland Math. Library 32, 469-488.

[^0]: ${ }^{1}$ Department of Statistics and Applied Probability, South Hall, University of California, Santa Barbara, CA 93106 (E-mail: ichiba@pstat.ucsb.edu). Research supported in part by the National Science Foundation under grant NSF-DMS-13-13373 and DMS-16-15229. Part of research is joint work with Romuald Elie and Mathieu Lauriere.

